

♦Structure	Silicon monolithic integrated cir	cuit
\diamondsuit Product Series	Lens control LSI	
⊘Туре	BU24026GU	
\diamondsuit Applications	Digital still cameras	
\Diamond Functions	 Waveforming circuit (3 channe 	ls)
	•PI driving circuit (2 channels)	
	 Driver block (1–6 channels) 	: Constant voltage control type H-bridge
	 Driver block (7 channel) 	: Constant current control type H-bridge

\bigcirc Absolute maximum ratings (Ta = 25°C)

Parameter	Symbol	Limits	Unit	Remark
	DVDD	-0.3~4.5	V	
Power supply voltage	MVCC	-0.3~7.0	V	
	VDDAMP	-0.3~7.0	V	
Input voltage	VIN	-0.3~DVDD+0.3	V	
Input/output current	IIN	± 500	mA	Driver block (by MVCC pin)
input/output current	1111	+100	mA	by PIOUT pin
Storage temperature range	TSTG	-55~125	°C	
Operating temperature range	TOPE	-20~85	°C	
Permissible dissipation	PD	1.37	W	*1

This product is not designed for anti-radiation applications.

*1To use at a temperature higher than Ta=25°C, derate 13.7mW per 1°C.

(At mounting 50 mm \times 58 mm \times 1.75mm glass epoxy board.)

 \bigcirc Operating conditions(Ta = 25°C)

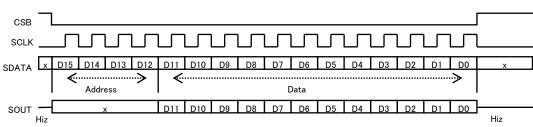
Parameter	Symbol	Limits	Unit	Remark
Digital power supply voltage	DVDD	2.7~3.6	V	DVDD≦MVCC
Driver power supply voltage	MVCC	2.7~5.5	V	
Constant current control amplifier power supply voltage	VDDAMP	2.7~5.5	V	
clock operating frequency	FCLK	1~27.5	MHz	Reference clock

\bigcirc Electrical characteristics

(Unless otherwise specified, Ta=25°C, DVDD=3.0V, MVCC=5.0V, VDDAMP=5.0V, DVSS=MGND=0.0V)

Parameter		Sumah al		Limits	Unit	Condition	
Parameter		Symbol	MIN. TYP. MIN.		Unit	Condition	
<current consumption=""></current>	>						
Quiescence (I	DVDD)	ISSD	-	30	100	μA	CMD_RS=0
()	MVCC)	ISSVM	-	0	5	μA	CMD_RS=0
Operation (DVDD)	IDDD	-	8.5	15.0	mA	CMD_RS=1
<logic block=""></logic>							
Low-level input v	oltage	VIL	DVSS	—	0.3DVDD	V	
High-level input v	oltage	VIH	0.7DVDD	_	DVDD	٧	
Low-level input c	urrent	IIL	0	_	10	μA	VIL = DVSS
High-level input c	urrent	IIH	0	_	10	μA	VIH = DVDD
Low-level output v	oltage	VOL	DVSS	_	0.2DVDD	V	IOL = 1.0mA
High-level output v	oltage	VOH	0.8DVDD	_	DVDD	V	IOH = 1.0mA
<pi circuit="" driving=""></pi>							
Output v	/oltage	PIVO	-	0.28	0.50	V	IIH = 50mA
<waveforming 1<="" circuit="" td=""><td> ch></td><td></td><td></td><td></td><td></td><td></td><td>·</td></waveforming>	ch>						·
Detective voltage	e range	V_{th}	0.5	-	2. 5	V	SI1
Detective voltag	e error	٧	1/2DVDD - 0.1	1/2DVDD	1/2DVDD + 0.1	V	Waveforming Vth = 20h setting
<waveforming 2<="" circuit="" td=""><td>2,3ch></td><td></td><td></td><td></td><td></td><td></td><td></td></waveforming>	2,3ch>						
High-level threshold ve	oltage	V_{thH1}	_	_	1.9	V	SI2, SI3 (DVDD=3.25V), Hys ON
Low-level threshold ve	oltage	V_{thL1}	0.6	_	-	V	SI2, SI3 (DVDD=3.25V), Hys ON
Hysteresis	width	HYS	0.2	_	0.6	V	SI2, SI3 (DVDD=3.25V), Hys ON
threshold v	oltage	V_{thH2}	1.0	_	1.85	V	SI2, SI3 (DVDD=3.25V), Hys OFF
<constant driv<="" td="" voltage=""><td>er block</td><td></td><td></td><td></td><td></td><td></td><td>·</td></constant>	er block						·
ON-resis	stance	Ron	-	1.5	2.0	Ω	$IO = \pm 100 mA$
OFF-leak c	urrent	IOZ	-10	0	10	μA	Output Hiz setting
Turn-Ol	N time	tON	-	0.15	1.0	μS	
Turn-OFI	F time	tOFF	-	0.1	0.5	μS	
Average voltage ac	curacy	Vdiff	-5	-	+5	%	Vdiff = 2.0V setting.
<constant current="" driv<="" td=""><td>/er blocl</td><td>k></td><td></td><td></td><td></td><td></td><td>· · · · ·</td></constant>	/er blocl	k>					· · · · ·
ON-resis	ON-resistance Ron		_	0.9	1.5	Ω	$IO = \pm 100 \text{mA}$
OFF-leak c	urrent	IOZ	-10	0	10	μA	Output Hiz setting
Output vo	oltage	VO	188	200	212	mV	DAC setting: 1010_0111, RRNF=1[Ω]
Turn-Ol		tON	_	0.15	1.0	μS	
Turn-OFI	F time	tOFF	_	0.1	0.5	μS	

\bigcirc 3-wire serial interface


Control commands are framed by 16-bit serial input (MSB first) and input through the CSB, SCLK, and SDATA pins.

4 higher-order bits specify addresses, while the remaining 12 bits specify data.

Data of every bit is input through the SDATA pin, retrieved on the rising edges of SCLK.

Data becomes valid in the CSB Low area. The loading timing is different in the resistor. (as shown in "Note 5,6")

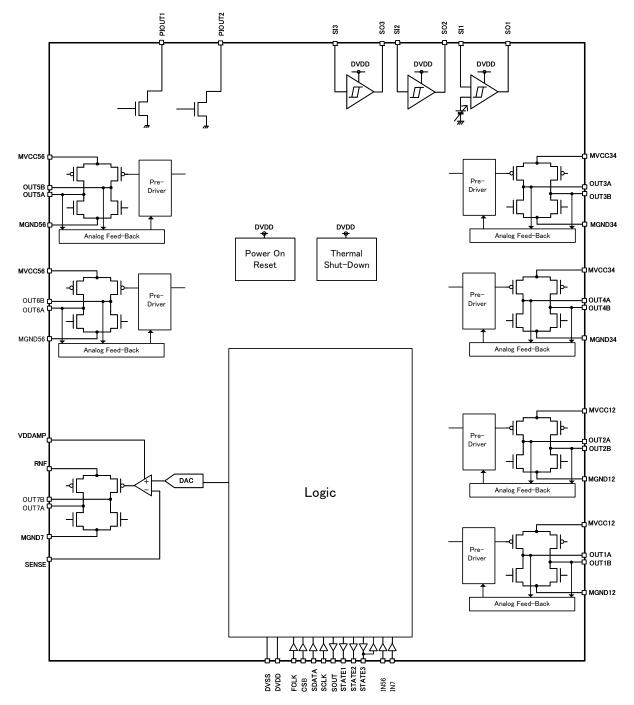
Furthermore, the interface will be synchronized with the falling edges of SCLK to output the SOUT data of the 12 bits.

<Register map>

togioco		ss[3:0]							Data	[11:0]									
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0				
0	0	0	0	Mode	A[1:0]	SelA	A[1:0]	0			Ach differe	nt output	voltage[6:0]					
				0	0	0	0				Ach Cy	cle[7:0]							
0	0	0	1	0	0	1	0		Ach Cycle[15:8]										
				1	1	1	0	0	0	APO	S[1:0]	0	0	0	ASTOP				
0	0	1	0	EnA	RtA					Ach Pı	ulse[9:0]								
0	0	1	1	Ach sta	tus[1:0]				Ach o	peration p	ulse numbe	r[9:0]							
0	1	0	0	Mode	B[1:0]	SelE	3[1:0]	0		E	3ch differer	nt output v	voltage [6:0)]					
			0	0	0	0				Bch Cy	cle[7:0]								
0	1	0	1	0	0	1	0				Bch Cyc	le[15:8]							
				1	1	1	0	0	0	BPO	S[1:0]	0	0	0	BSTOP				
0	1	1	0	EnB	RtB					Bch Pı	ulse[9:0]								
0	1	1	1	Bch sta	tus[1:0]				Bch o	peration p	ulse numbe	er[9:0]							
1	0	0	0	Mode	C[1:0]	SelC	C[1:0]	0		(Cch differer	nt output v	voltage [6:0)]					
				0	0	0	0				Cch Cy	cle[7:0]							
				0	0	1	0		•		Cch Cyd	le[15:8]							
1	0	0	1	1	0	1		L_Ct[1:0]			5ch differei		-						
						1	1	0	6_PWM	L_Ct[1:0]									
					1	1	1	0	0 0 CPOS[1:0] 0 0 0 CSTOP										
1	0	1	0	EnC	RtC						ulse[9:0]								
1	0	1	1		tus[1:0]			1			ulse numbe		1						
1	1	0	0	0	0		ing[1:0]	CacheM		SEL56[2:0	1	P_CTRL		CLK_DIV[2	-				
				0	0	0	0	0	0	0	0	0	0		PI_CTRL2				
				0	0	1	0	0	5_PULSE_CNT	5_PULSE	_BASE[1:0]	0	6_PULSE_CNT	6_PULSE	_BASE[1:0]				
				0	1	0	0				5_PULSE_C								
					0	1	0	1	_		6_PULSE_C								
				0	1	1	0	0	EXT_EN	0	EXT_RT			UM[3:0]					
				1	0	0	0		EXT_I					PAT0					
1	1	1 0	1	1	0	0	1		EXT_PAT3				EXT_PAT2						
						ļ			1	0	1	0		EXT_PAT5			EXT_PAT4		
							1	0	1	1		EXT_I			EXT_PAT6 EXT_PAT8				
				1	1	0	0		EXT_I										
				1	1	1	1		EXT_F					PAT10					
				1	1	1	1		EXT_F					PAT12					
			-	0	0	0	0	0	EXT_F			veltere e			7.0]				
					0	1	0	0		onstant cur	rent drivei 0	r reference 0	voltage a	djustment 0	1				
				1	0	0	0	0				RL[1:0]							
1	1	1	0	1	0	0	1	0	0										
				1	0	1	0	0	0	0	Wa 0	vetoming ci	rcuit 1 Vthl[0	HYS3	HYS2				
				1	1	0	0	0	0	0	0	0	0	0	CMD_RS				
Addroc	ses other	than these		<u>'</u>		U	Ū	Ū		orohibited	U	U	U	Ū					
Auures	ses ourier	unari unose	e above						Security p	Desiranto									

(Note 1) The notations A, B, C in the register map correspond to Ach, Bch and Cch respectively.

(Note 2) The Ach is defined as 1ch and 2ch driver output, the Bch as 3ch and 4ch driver output, and Cch as 5ch and 6ch driver output. (Note 3) After resetting (Power ON reset, and CMD_RS), "initial setting" is saved in all registers.



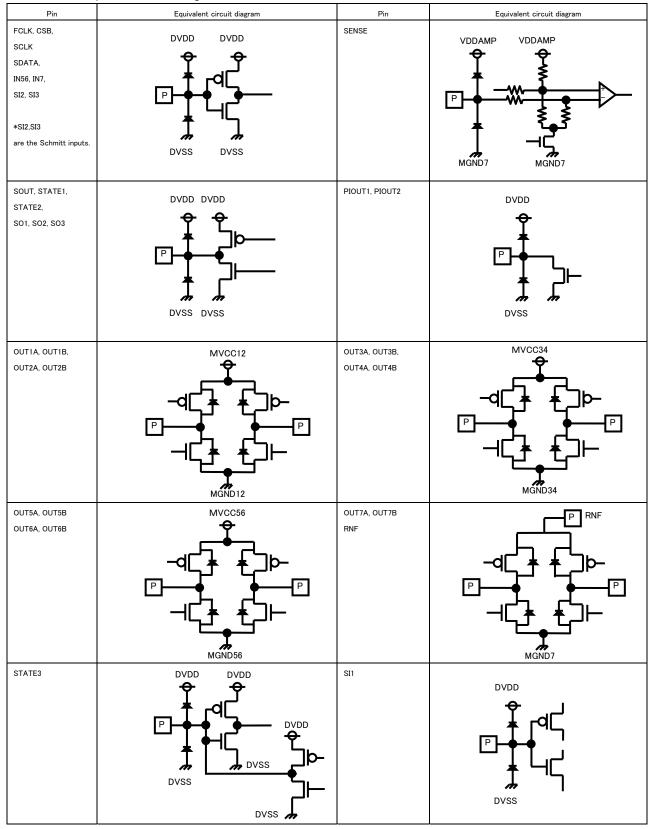
- (Note 4) The addresses 4' b0011, 4' b0111, and 4' b1011 have data (status[1:0], operation pulse number[9:0]), which are internal register values and output from the SOUT pin.
- (Note 5) For Mode, different output voltage, Cycle, En, and Rt registers, data that are written before the access to the Pulse register becomes valid, and determined at the rising edge of CSB after the access to the Pulse register. (The Mode, different output voltage, Cycle, En, Rt, and Pulse registers contain Cache registers, but any registers other than those do not contain with such registers.)

(Note 6) For POS, STOP, PWM_Ct, and different output voltage registers, data are determined at the rising edge of CSB,

and for any registers other than those, data are determined at the rising edge of 16th SCLK .

◇Block Diagram

\bigcirc Pin functions


	1				
Land	Pin name	Power	Function	I/O	Handling of unused pins
E6	DVDD	-	Digital power supply	Power supply	-
E2	DVSS	-	Ground	GND	-
C2	FCLK	DVDD	main clock logic input	I	pull down(DVSS)
D4	CSB	DVDD	Serial control chip select input	I	pull up(DVDD)
B3	SCLK	DVDD	Serial control clock input	I	pull down(DVSS)
D3	SDATA	DVDD	Serial control data input	I	pull down(DVSS)
B5	SOUT	DVDD	Serial control data output	0	open
E4	STATE1	DVDD	STATE1 1,2ch condition logic output	0	open
F4	STATE2	DVDD	STATE2 3,4ch condition logic output	0	open
F5	STATE3	DVDD	STATE 3 5,6ch condition logic output / 5,6ch control logic input	$I \swarrow O(initial \ condition: O)$	open
D5	IN56	DVDD	5,6ch control logic input	I	pull down(DVSS)
C5	IN7	DVDD	7ch control logic input	Ι	pull down(DVSS)
E3	PIOUT1	DVDD	PI driving output1	0	open
D2	PIOUT2	DVDD	PI driving output2	0	open
E5	SI1	DVDD	1ch waveforming input(With adjustment function of threshold voltage)	I	pull down(DVSS)
B4	SI2	DVDD	2ch waveforming input	I	pull down(DVSS)
C6	SI3	DVDD	3ch waveforming input	I	pull down(DVSS)
F3	S01	DVDD	1ch waveforming output	0	open
C4	SO2	DVDD	2ch waveforming output	0	open
D6	S03	DVDD	3ch waveforming output	0	open
A1, B2%	MVCC12	-	1-2channel driver power supply	Power supply	-
A1, B2 🔆 A4	MGND12	_	1–2channel driver ground	GND	_
A4 A2	OUT1A	MVCC12	1-channel driver A output	0	
	OUT1A		1-channel driver B output	0	open
A3		MVCC12			open
A5	OUT2A	MVCC12	2-channel driver A output 2-channel driver B output	0	open
A6	OUT2B	MVCC12	3-4channel driver power supply	0	open
A7, B6※	MVCC34	-	3-4channel driver ground	Power supply	-
D7	MGND34	-		GND	-
B7	OUT3A	MVCC34	3-channel driver A output	0	open
C7	OUT3B	MVCC34	3-channel driver B output	0	open
E7	OUT4A	MVCC34	4-channel driver A output	0	open
F7	OUT4B	MVCC34	4-channel driver B output	0	open
G5	MVCC56	-	5-6channel driver power supply	Power supply	-
G3	MGND56	-	5-6channel driver ground	GND	-
G6	OUT5A	MVCC56	5-channel driver A output	0	open
F6, G7💥	OUT5B	MVCC56	5-channel driver B output	0	open
G4	OUT6A	MVCC56	6-channel driver A output	0	open
G2	OUT6B	MVCC56	6-channel driver B output	0	open
D1	RNF	_	7-channel driver power supply	Power supply	-
B1	MGND7	-	7-channel driver ground	GND	-
F2, G1※	VDDAMP	-	Power supply of constant current driver control	Power supply	-
F1	SENSE	VDDAMP	Negative input for constant current driver control	I	pull down(MGND7)
E1	OUT7A	RNF	7-channel driver A output	0	open
C1	OUT7B	RNF	7-channel driver B output	0	open
C3	INDEX	_	Index pin	-	_

%It is not possible to use corner pin only. (Corner pins are A1, A7, G1, and G7.)

Please use A1-B2, A7-B6, F2-G1, F6-G7 pair respectively or using B2, B6, F2, F6 only.

◇Pin related equivalent circuit diagrams

VDDAN

SENS

0UT7A

RNF

оптл

MVCC12

1

OUTEE

DVSS

PIOUT2

FOLK

MVOC12

OUTIA

2

G

F

Е

D

С

в

A

\bigcirc Pin assignment diagram (reverse side)

GND5

SO1

PIOUT1

SDATA

 \bigcirc

SOLK

OUTIB

3

OUTEA

(STATE2)

(STATE1)

CSB

SO2

SI2

IGND12

4

SI 1

IN56

IN7

sour

OUT2A

5

DVDD

SO3

S13

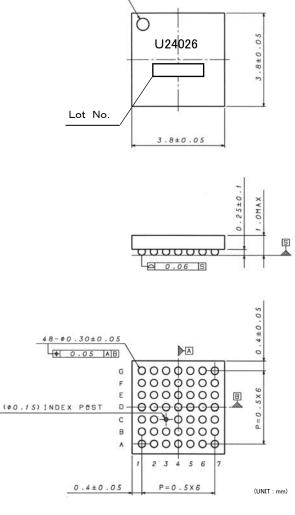
OUT2E

6

(OUT4A)

GND

ООТЗВ


OUTSA

(муссз

7

\bigcirc Outline dimensions/Marking figure

VCSP85H3

♦ Cautions on use

- (1) Absolute maximum ratings
- If applied voltage, operating temperature range, or other absolute maximum ratings are exceeded, the LSI may be damaged. Do not apply voltages or temperatures that exceed the absolute maximum ratings. If you expect that any voltage or temperature could be exceeding the absolute maximum ratings, take physical safety measures such as fuses to prevent any conditions exceeding the absolute maximum ratings from being applied to the LSI. (2) GND potential

Maintain the GND pin at the minimum voltage even under any operating conditions.

Actually check to be sure that none of the pins have voltage lower than that of GND pin, including transient phenomena.

(3) Thermal design

- With consideration given to the permissible dissipation under actual use conditions, perform thermal design so that adequate margins will be provided.
 (4) Short circuit between pins and malfunctions
- To mount the LSI on a board, pay utmost attention to the orientation and displacement of the LSI. Faulty mounting to apply a voltage to the LSI may cause damage to the LSI. Furthermore, the LSI may also be damaged if any foreign matters enter between pins, between pin and power supply, or between pin and GND of the LSI.

(5) Operation in strong magnetic field

Make a thorough evaluation on use of the LSI in a strong magnetic field. Not doing so may malfunction the LSI.

	Notes
	or reproduction of this document, in part or in whole, is permitted without the ROHM Co.,Ltd.
The content	specified herein is subject to change for improvement without notice.
"Products").	specified herein is for the purpose of introducing ROHM's products (hereinafte If you wish to use any such Product, please be sure to refer to the specifications e obtained from ROHM upon request.
illustrate the	application circuits, circuit constants and any other information contained hereir standard usage and operations of the Products. The peripheral conditions mus account when designing circuits for mass production.
However, sh	vas taken in ensuring the accuracy of the information specified in this document nould you incur any damage arising from any inaccuracy or misprint of such ROHM shall bear no responsibility for such damage.
examples or implicitly, an other parties	al information specified herein is intended only to show the typical functions of and f application circuits for the Products. ROHM does not grant you, explicitly o y license to use or exercise intellectual property or other rights held by ROHM and s. ROHM shall bear no responsibility whatsoever for any dispute arising from the technical information.
equipment c	es specified in this document are intended to be used with general-use electronic or devices (such as audio visual equipment, office-automation equipment, commu- ices, electronic appliances and amusement devices).
The Product	s specified in this document are not designed to be radiation tolerant.
	A always makes efforts to enhance the quality and reliability of its Products, a a fail or malfunction for a variety of reasons.
against the failure of any shall bear n	ure to implement in your equipment using the Products safety measures to guard possibility of physical injury, fire or any other damage caused in the event of the y Product, such as derating, redundancy, fire control and fail-safe designs. ROHM o responsibility whatsoever for your use of any Product outside of the prescribed t in accordance with the instruction manual.
system whic may result in instrument, controller or of the Produ	ts are not designed or manufactured to be used with any equipment, device or the requires an extremely high level of reliability the failure or malfunction of which in a direct threat to human life or create a risk of human injury (such as a medica transportation equipment, aerospace machinery, nuclear-reactor controller, fuel- other safety device). ROHM shall bear no responsibility in any way for use of any ucts for the above special purposes. If a Product is intended to be used for any I purpose, please contact a ROHM sales representative before purchasing.
be controlle	I to export or ship overseas any Product or technology specified herein that may d under the Foreign Exchange and the Foreign Trade Law, you will be required to nse or permit under the Law.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/